3.430 \(\int (g x)^m (d+e x)^3 \left (a+c x^2\right )^p \, dx\)

Optimal. Leaf size=276 \[ -\frac{e (g x)^{m+2} \left (a+c x^2\right )^p \left (\frac{c x^2}{a}+1\right )^{-p} \left (a e^2 (m+2)-3 c d^2 (m+2 p+4)\right ) \, _2F_1\left (\frac{m+2}{2},-p;\frac{m+4}{2};-\frac{c x^2}{a}\right )}{c g^2 (m+2) (m+2 p+4)}-\frac{d (g x)^{m+1} \left (a+c x^2\right )^p \left (\frac{c x^2}{a}+1\right )^{-p} \left (3 a e^2 (m+1)-c d^2 (m+2 p+3)\right ) \, _2F_1\left (\frac{m+1}{2},-p;\frac{m+3}{2};-\frac{c x^2}{a}\right )}{c g (m+1) (m+2 p+3)}+\frac{3 d e^2 (g x)^{m+1} \left (a+c x^2\right )^{p+1}}{c g (m+2 p+3)}+\frac{e^3 (g x)^{m+2} \left (a+c x^2\right )^{p+1}}{c g^2 (m+2 p+4)} \]

[Out]

(3*d*e^2*(g*x)^(1 + m)*(a + c*x^2)^(1 + p))/(c*g*(3 + m + 2*p)) + (e^3*(g*x)^(2
+ m)*(a + c*x^2)^(1 + p))/(c*g^2*(4 + m + 2*p)) - (d*(3*a*e^2*(1 + m) - c*d^2*(3
 + m + 2*p))*(g*x)^(1 + m)*(a + c*x^2)^p*Hypergeometric2F1[(1 + m)/2, -p, (3 + m
)/2, -((c*x^2)/a)])/(c*g*(1 + m)*(3 + m + 2*p)*(1 + (c*x^2)/a)^p) - (e*(a*e^2*(2
 + m) - 3*c*d^2*(4 + m + 2*p))*(g*x)^(2 + m)*(a + c*x^2)^p*Hypergeometric2F1[(2
+ m)/2, -p, (4 + m)/2, -((c*x^2)/a)])/(c*g^2*(2 + m)*(4 + m + 2*p)*(1 + (c*x^2)/
a)^p)

_______________________________________________________________________________________

Rubi [A]  time = 0.851224, antiderivative size = 254, normalized size of antiderivative = 0.92, number of steps used = 7, number of rules used = 4, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182 \[ \frac{e (g x)^{m+2} \left (a+c x^2\right )^p \left (\frac{c x^2}{a}+1\right )^{-p} \left (\frac{3 d^2}{m+2}-\frac{a e^2}{c (m+2 p+4)}\right ) \, _2F_1\left (\frac{m+2}{2},-p;\frac{m+4}{2};-\frac{c x^2}{a}\right )}{g^2}+\frac{d (g x)^{m+1} \left (a+c x^2\right )^p \left (\frac{c x^2}{a}+1\right )^{-p} \left (\frac{d^2}{m+1}-\frac{3 a e^2}{c (m+2 p+3)}\right ) \, _2F_1\left (\frac{m+1}{2},-p;\frac{m+3}{2};-\frac{c x^2}{a}\right )}{g}+\frac{3 d e^2 (g x)^{m+1} \left (a+c x^2\right )^{p+1}}{c g (m+2 p+3)}+\frac{e^3 (g x)^{m+2} \left (a+c x^2\right )^{p+1}}{c g^2 (m+2 p+4)} \]

Antiderivative was successfully verified.

[In]  Int[(g*x)^m*(d + e*x)^3*(a + c*x^2)^p,x]

[Out]

(3*d*e^2*(g*x)^(1 + m)*(a + c*x^2)^(1 + p))/(c*g*(3 + m + 2*p)) + (e^3*(g*x)^(2
+ m)*(a + c*x^2)^(1 + p))/(c*g^2*(4 + m + 2*p)) + (d*(d^2/(1 + m) - (3*a*e^2)/(c
*(3 + m + 2*p)))*(g*x)^(1 + m)*(a + c*x^2)^p*Hypergeometric2F1[(1 + m)/2, -p, (3
 + m)/2, -((c*x^2)/a)])/(g*(1 + (c*x^2)/a)^p) + (e*((3*d^2)/(2 + m) - (a*e^2)/(c
*(4 + m + 2*p)))*(g*x)^(2 + m)*(a + c*x^2)^p*Hypergeometric2F1[(2 + m)/2, -p, (4
 + m)/2, -((c*x^2)/a)])/(g^2*(1 + (c*x^2)/a)^p)

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 65.7692, size = 233, normalized size = 0.84 \[ \frac{3 d e^{2} \left (g x\right )^{m + 1} \left (a + c x^{2}\right )^{p + 1}}{c g \left (m + 2 p + 3\right )} - \frac{d \left (g x\right )^{m + 1} \left (1 + \frac{c x^{2}}{a}\right )^{- p} \left (a + c x^{2}\right )^{p} \left (3 a e^{2} \left (m + 1\right ) - c d^{2} \left (m + 2 p + 3\right )\right ){{}_{2}F_{1}\left (\begin{matrix} - p, \frac{m}{2} + \frac{1}{2} \\ \frac{m}{2} + \frac{3}{2} \end{matrix}\middle |{- \frac{c x^{2}}{a}} \right )}}{c g \left (m + 1\right ) \left (m + 2 p + 3\right )} + \frac{e^{3} \left (g x\right )^{m + 2} \left (a + c x^{2}\right )^{p + 1}}{c g^{2} \left (m + 2 p + 4\right )} - \frac{e \left (g x\right )^{m + 2} \left (1 + \frac{c x^{2}}{a}\right )^{- p} \left (a + c x^{2}\right )^{p} \left (a e^{2} \left (m + 2\right ) - 3 c d^{2} \left (m + 2 p + 4\right )\right ){{}_{2}F_{1}\left (\begin{matrix} - p, \frac{m}{2} + 1 \\ \frac{m}{2} + 2 \end{matrix}\middle |{- \frac{c x^{2}}{a}} \right )}}{c g^{2} \left (m + 2\right ) \left (m + 2 p + 4\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((g*x)**m*(e*x+d)**3*(c*x**2+a)**p,x)

[Out]

3*d*e**2*(g*x)**(m + 1)*(a + c*x**2)**(p + 1)/(c*g*(m + 2*p + 3)) - d*(g*x)**(m
+ 1)*(1 + c*x**2/a)**(-p)*(a + c*x**2)**p*(3*a*e**2*(m + 1) - c*d**2*(m + 2*p +
3))*hyper((-p, m/2 + 1/2), (m/2 + 3/2,), -c*x**2/a)/(c*g*(m + 1)*(m + 2*p + 3))
+ e**3*(g*x)**(m + 2)*(a + c*x**2)**(p + 1)/(c*g**2*(m + 2*p + 4)) - e*(g*x)**(m
 + 2)*(1 + c*x**2/a)**(-p)*(a + c*x**2)**p*(a*e**2*(m + 2) - 3*c*d**2*(m + 2*p +
 4))*hyper((-p, m/2 + 1), (m/2 + 2,), -c*x**2/a)/(c*g**2*(m + 2)*(m + 2*p + 4))

_______________________________________________________________________________________

Mathematica [A]  time = 0.253318, size = 186, normalized size = 0.67 \[ x (g x)^m \left (a+c x^2\right )^p \left (\frac{c x^2}{a}+1\right )^{-p} \left (\frac{d^3 \, _2F_1\left (\frac{m+1}{2},-p;\frac{m+3}{2};-\frac{c x^2}{a}\right )}{m+1}+\frac{3 d^2 e x \, _2F_1\left (\frac{m}{2}+1,-p;\frac{m}{2}+2;-\frac{c x^2}{a}\right )}{m+2}+\frac{3 d e^2 x^2 \, _2F_1\left (\frac{m+3}{2},-p;\frac{m+5}{2};-\frac{c x^2}{a}\right )}{m+3}+\frac{e^3 x^3 \, _2F_1\left (\frac{m}{2}+2,-p;\frac{m}{2}+3;-\frac{c x^2}{a}\right )}{m+4}\right ) \]

Antiderivative was successfully verified.

[In]  Integrate[(g*x)^m*(d + e*x)^3*(a + c*x^2)^p,x]

[Out]

(x*(g*x)^m*(a + c*x^2)^p*((3*d^2*e*x*Hypergeometric2F1[1 + m/2, -p, 2 + m/2, -((
c*x^2)/a)])/(2 + m) + (e^3*x^3*Hypergeometric2F1[2 + m/2, -p, 3 + m/2, -((c*x^2)
/a)])/(4 + m) + (d^3*Hypergeometric2F1[(1 + m)/2, -p, (3 + m)/2, -((c*x^2)/a)])/
(1 + m) + (3*d*e^2*x^2*Hypergeometric2F1[(3 + m)/2, -p, (5 + m)/2, -((c*x^2)/a)]
)/(3 + m)))/(1 + (c*x^2)/a)^p

_______________________________________________________________________________________

Maple [F]  time = 0.086, size = 0, normalized size = 0. \[ \int \left ( gx \right ) ^{m} \left ( ex+d \right ) ^{3} \left ( c{x}^{2}+a \right ) ^{p}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((g*x)^m*(e*x+d)^3*(c*x^2+a)^p,x)

[Out]

int((g*x)^m*(e*x+d)^3*(c*x^2+a)^p,x)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int{\left (e x + d\right )}^{3}{\left (c x^{2} + a\right )}^{p} \left (g x\right )^{m}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + d)^3*(c*x^2 + a)^p*(g*x)^m,x, algorithm="maxima")

[Out]

integrate((e*x + d)^3*(c*x^2 + a)^p*(g*x)^m, x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left ({\left (e^{3} x^{3} + 3 \, d e^{2} x^{2} + 3 \, d^{2} e x + d^{3}\right )}{\left (c x^{2} + a\right )}^{p} \left (g x\right )^{m}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + d)^3*(c*x^2 + a)^p*(g*x)^m,x, algorithm="fricas")

[Out]

integral((e^3*x^3 + 3*d*e^2*x^2 + 3*d^2*e*x + d^3)*(c*x^2 + a)^p*(g*x)^m, x)

_______________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((g*x)**m*(e*x+d)**3*(c*x**2+a)**p,x)

[Out]

Timed out

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int{\left (e x + d\right )}^{3}{\left (c x^{2} + a\right )}^{p} \left (g x\right )^{m}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + d)^3*(c*x^2 + a)^p*(g*x)^m,x, algorithm="giac")

[Out]

integrate((e*x + d)^3*(c*x^2 + a)^p*(g*x)^m, x)